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The description of a laminar boundary layer with a constant pressure gradient 
parameter ,8 but with an initial velocity profile close to that given by the solution 
of the Falkner-Skan equation for that /3, is shown to lead to an eigenvalue prob- 
lem in much the same manner as prevails for the Blasius solution. However, i t  
is found that only for p > Po, where Po corresponds to the separation value, and 
for the upper branch solutions are the eigenvalues all positive and the flow 
spatially stable. The lower branch solutions involve negative as well as positive 
eigenvalues and are spatially unstable. 

1. Introduction 
Recent work (Libby & Fox 1963; Van Dyke 1964a; Libby 1966) has shown 

that interesting and perhaps useful calculations of some laminar boundary layers 
with uniform external streams can be carried out by considering flows nearly 
described by the Blasius equation. The analysis which results from this considera- 
tion leads to an eigenvalue problem; since the associated eigenfunctions are found 
to form an orthogonal set, they provide means for solving a variety of problems 
with little numerical analysis (cf. Libby 1966). In  addition, Van Dyke (1964a, b )  
has shown that these eigenvalues and eigenfunctions are useful in connexion with 
second-order boundary-layer theory and with the asymptotic approach of the 
boundary layer on a parabolic slab to its flat-plate behaviour far downstream 
of the leading edge. 

It is the purpose of this paper to present the eigenvalue problem associated 
with the Falkner-Skan equation; thus in a physical sense we are considering 
flows which are nearly described by solutions to the Falkner-Skan equation, i.e. 
flows which are nearly similar. Previous experience has shown that the develop- 
ment of the eigenfunctions and their properties can be carried out in connexion 
with a variety of physical problems. We choose here the initial value problem, 
i.e. we consider flows for which the pressure gradient parameter ,8 is constant. At 
some streamwise station an initial velocity profile differing somewhat from that 
given by the similar solution for the specified /3 is assumed to be given and we 
calculate the downstream behaviour of the boundary layer. 

On physical grounds we expect the effect of the deviation of the initial profile 
from the similar profile to decay with increasing streamwise distance and thus 
for the boundary layer to approach asymptotically the similar profile. However, 
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it  will be of interest to confirm that this expectation is mathematically correct 
at least in some sense, i.e. in terms of a linear theory, which is exact in the limit 
of vanishingly small deviations from strict similarity. In  this connexion we note 
that Serrin (1967) has recently proved for p 2 0, i.e. for favourable pressure 
gradients, that the boundary layer with any initial profile does indeed approach 
asymptotically that corresponding to similarity. 

We emphasize that although the present analysis will refer specifically to 
this initial value problem the results may be expected to be applicable to a 
variety of slightly non-similar boundary layers in fluids of constant properties. 

The present study is restricted to the usual range of p, i.e. to Po < p < 2 where 
lo = - 0.1988. Thus we shall not consider the overshoot profiles ( f ’  > 1 for some 
7) recently found by Libby & Liu (1967). In the range Po < /3 < 0 there are two 
solutions to the Falkner-Skan equation for each p; those with positive velocities 
are termed the upper branch solutions, those with regions of reverse flow the 
lower-branch solutions. 

2. The problem specified 

The equation for the modified stream functionf(s, 7) is 
Consider a nonsimilar laminar boundary layer in a fluid of constant properties. 

where the independent variables are related to the x, y co-ordinates according to 

7 = pueyrj(2s)-9, 

and where the u, v velocity components are related to f(s, 7) according to 

We consider a flow with p(s) = constant = Pm and with initial and boundary 
conditions specified as f(%, 7) = P(7) ,  

f(% 0) = f&, 0) = 0,  

f , ( s ,4  = 1 

fh 7) = f m ( 7 )  +fib 7) +fz(s, 7) + ..- 
and assume a form of solution 

(2.3) 

where, in accordance with the notion that the flow deviates only slightly from one 
described byf,(v), we consider (2.3) to involve a sequence of successively smaller 
functions. This clearly implies that F(7)  deviates only slightly from fm(q). 
Indeed in the limit of vanishingly small deviations this assumed form must be 
considered exact. 



Boundary layers with small departures from the Falkner-Skan proJile 275 

The zero-order solution is described by the well-known problem 

f:+fmf:+Pm(l-f.) = 0 (2.4) 

subject to the conditions fm(0) = fL(0) = 0, &(a) = 1 and to the auxiliary con- 
dition that the approach off‘ to unity as y -+ 00 must be exponential. Solutions 
to equation (2.4) may be either generated by existing numerical techniques or 
considered given in tabular form, e.g. in Rosenhead (1963). 

The equation for fl(s,q) is found by substitution of (2.3) into (2.1) and by 
proper ordering to be 

Lfl = fl,,, +fmf1, ,  - 2Pmfkf1, + f31- 2s(f:fl,, --f~flS) = 0, 

f l (% 7) = F(7)  - f m ( r ) ;  
fl(S,O) =f1& 0) =f1,(S,co) = 0. 

(2.5) 

which is subject to 

The equations for the successive approximations are the inhomogeneous equa- 
tions 

where homogeneous initial and boundary conditions on f, previal and where 
R, is an explicit function of fl, f2, . . . , fn-l; for example, 

R2 = --flfl,, + P m f &  + 2S(fl,fl,S --flUfl,,). 

The eigenvalue problem 

Consider further the solution for fl(s, y); if a product solution fl(s, y)  N S(s) N ( q )  
is sought, it is found that X N s - ~ A  where A is the separation constant and that 
there arises an eigenvalue problem for N(y) defined by 

X;  + f m  N: + (A, - 2p,) f:Nk + (1 - A,) f: Nn = 0 (2.7) 
and N,(O) = Nk(0)  = N ~ ( c o )  = 0,  

where we put an index n on h and N(y) in anticipation of finding sets of eigenfunc- 
tions and related eigenvalues. If the form of solution given by (2.3) is to be con- 
sistent with the specified exponential approach of f’(q) to unity as 7 -+ 03, we 
must restrict the approach of Nk(y) to zero as y -+ co to be exponential. It is this 
condition which for the Blasius solution, i.e. for Pm = 0, leads to discrete eigen- 
values (cf. Libby & Fox 1963); we expect the same behaviour for the more general 
case Pa + 0 being considered here. 

Properties of the eigenfunctions, P > Po 
A solution of (2.7) for any A, is X, N f; so that (2.7) may be reduced to a second- 
order equation. We must point out that for /3 > Po, f; is not an eigenfunction 
since it does not satisfy the homogeneous boundary condition NA(0) = 0 ;  
however, for ,tI = Po, fL  is indeed for any A, an eigenfunction possessing the proper 
exponential behaviour a t  q + 00. Accordingly, the case /3 = Po, may be expected 
to be distinctive; thus it is convenient to restrict attention for the time being to 
P > P o .  
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Introduce H, = (N,/f:) as suggested by the method of variation of para- 
meters; then ( 2 . 7 )  can be put in the form 

(pH;)’+ (q-tAn)Hn = 0, (2.8) 

where P = P(7) =f2exP  (S,lf&) > 

4 = 4(7) =fk2exp (S,?f,,d?) [Pm(3-f;2)+fmf:l. 

t = t(r)  =f:P, 

The boundary conditions on H, are 

HA(O) - ( P m / C , w )  Hn(0) = Hn(W) = 0, 

where again exponential decay of H,(q) to zero is required as 7 -+ co if Nk(7) is 
t o  have the proper asymptotic behaviour. Equation (2.8) is in Sturm-Liouville 
form (cf. e.g. Ince 1956) but our problem differs from the standard problem in 
some respects. In  particular we are interested in the semi-infinite range of 7. 
Moreover, for some range of P the usual restrictions on the sign and integerability 
of the coefficients p, t and q do not apply. Nevertheless, we follow as closelv as 
possible standard treatments. 

ForP 2 O,fm, f& > Oandthus~,t,qarepositiveforallrsothatwithexponential 
behaviour of H,(q) as 7 -+ co it is easy to show in the usual fashion for equations 
of the type of (2 .8)  that A, is real and positive and that the H,(r) functions are 

where C, is the square of the norm. For P o  < P < 0 the upper branch solutions 
again have f m ,  f& > 0 and p ,  t > 0. However, q is negative for at  least some range 
of 7 so that it is not possible to prove that A, is positive but only that there is a 
minimum value of A,; however, the proofs of realness and of orthogonality in the 
sense of (2.9) carry through. We deduce from the Sturm-Liouville theory for a 
finite domain that for the minimum A,, i.e. for A, = A,, H,(q) = H,(r) will have 
no zero for 7 > 0; we use this condition to identify A, for the upper branch solu- 
tions and for P 2 0 as well. We shall be interested in establishing for these upper 
branch solutions if the minimum value of A,, i.e. A,, is positive or negative. If 
the lowest eigenvalue is positive, then clearly all higher eigenvalues will be posi- 
tive; if it is negative, then both negative and positive eigenvalues prevail. 

For Po < p < 0 the lower branch solutions have f m ,  f& which are not monotonic; 
thus p changes sign and has a zero at the point where f; = 0. This appears to 
yield a non-standard Sturm-Liouville problem. Moreover, the demonstration of 
a minimum value for A, does not carry through; indeed the indication is that both 
positive and negative values of A, exist for this case. Nevertheless, the proof of 
(2.9) still applies as may be seen as follows; iff: = 0 at  7 = qo, the integration 
from 0 < 7 < co after cross multiplication of (2.8) for n and m must be performed 
in the subregions 0 6 7 < qo - 8, 7 > yo + E .  In  addition s power series in (7 - qo) 
must be used to approximate fob, p, H,, Hm, Hk and H I ,  in the neighbourhood of 
7 = qo. When this is done (2.9) and the proofs of the realness of the eigenvalues 
obtain. 
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The determination of the eigenfunctions and eigenvalues 

Although there are a variety of numerical techniques which can be and have been 
used for the determination of the sets of N,(7) and related An's the most accurate 
method is that described by Libby (1965). The basis thereof resides in the use of 
an outward integration of the full equation, (2.7)' to an appropriate value of 
7 = q-* and an inward integration of the asymptotic form of (2.7) from 

7 = 7** > 7" to 7". 

Matching of the two solutions at 7 = 7* provides an error measure for the deter- 
mination of A,. Here we have modified somewhat this method by extending the 
quasilinearization technique (cf. Bellman 1963; Kalaba 1963) to  an eigenvalue 
problem. This avoids the need to define an error measure and leads to a revised 
eigenvalue and revised eigenfunction in each iteration of the quasilinear scheme. 

We shall not describe the details of the technique but shall present the essential 
relations. In  particular we note that for 7 

N: + (7 - K )  N l  + ( A ,  - 2Pm) NA N yN,(co) (A, - 1) (7 - ~ ) - ~ @ m  exp [ - Q(7 - K ) ~ ] ,  

where K and y are constants characterizing the asymptotic behaviour of fm(7) 
according to 

f m ( q )  Y ( 7 - ~ ) + ~ ( 7 - ~ ) - ( ~ 8 r o + ~ ) e x p [ - g ( r - ~ ) ~ ]  [I- (Pa+ 1)(2P,+ 3 ) ( 7 - ~ ) - ~  
+ O ( r - K ) 2 +  ...I. (2.11) 

Values of K and y for various values of Pm may be found in Roseiihead (1963); 
computation of additional values is a straightforward matter. Equation 
(2.10) must be integrated inward in order to prevent loss of accuracy due to 
round-off error. The initial condition to be applied at  7 = 7** may be derived 
from the one asymptotic solution of (2.10) with the appropriate exponential 
decay. Whittaker & Watson (1936) provide the requisite complementary solution; 
the particular solution may be found by inspection. Elimination of the arbitrary 
constant between the solution for Nk and that for NL results in the equation 

1, (2.7) becomes 

(2.10) 

N ;  = - (7 - K )  ~ ; [ 1 +  (1  -A,+ 2pm) (7 - K ) - 2 +  o(7 - 4 - 4 +  ...I 

+ ( 1  -A,)yN,(co) (7-~) -@@m-~)exp[-g(q- -~)~]  [ 1 + 0 ( 7 - ~ ) - ~ +  ...I. (2.12) 

Now the second terms in the square brackets of (2.1 1)  and (2.12) provide the means 
for establishing 7" and 7**, respectively. In  addition the outward integration in 
the range 0 < 7 < 7" provides the estimate N,(co) N N,(q*); thus (2.12) provides 
the initial condition for the inward integration in the range 7" 6 7 < 7** within 
a multiplicative factor. In  the quasilinear scheme A,, N,(r*) and this multiplica- 
tive factor are selected in each iteration cycle so that N;,  NA and N ,  are continu- 
ous at  7 = 7". 

We have found quasilinearization to work quite satisfactorily in general. 
There are difficulties which arise in the neighbourhood of Pm = Po for A, > 0 
and whose treatment we shall discuss in more detail below. There are in addition 
difficulties for large negative values of A, such as will be seen below to arise in 
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connexion with the lower branch solutions. These are due to  the impossibility of 
suppressing completely the algebraic terms in the asymptotic solution of (2.10); 
for these cases quasilinearization involving only outward integration was found 
satisfactory for determining the eigenvalues. 

Results of the numerical analysis 
The significant results of the numerical analysis are shown in figure 1. First, 
we give for Pm > 0 and for the upper branch solutions the lowest eigenvalues, i.e. 
A,, for the range Po < pm < 2; the proof that A, > 0 for /Irn 2 0 is of course con- 
firmed but in addition we see that A, =- 0 for the upper branch solutions. This 

,Continuous eigenvalues 

6 

1 

/ 
/x 2 

1 
B 

- 40 

- 80 

-120 

-160 

FIGURE 1. The variation of the lowest eigenvalues with the pressure gradient 
parameter p. -, upper branch; ----, lower branch. 

result confirms within this linear theory our expectation that a boundary layer 
with an initial profile close to the similarity profile for the prescribed Pm will 
approach asymptotically the similarity solution for increasing downstream 
distance. This result may be compared with Serrin (1967) for 0 alluded to 
above. 
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Dm f: A, Cl 
2 1-6872 6.131 3.34 
1 1.2326 4.177 2.63 
0.5 0-9277 3.092 2.07 
0 0,4696 2 1-06 

- 0.05 0.4000 1.877 0.893 
- 0.1 0.3193 1.745 0.687 
- 0.15 0.2164 1.594 0.420 
- 0.18 0.1286 1.479 0.201 
-0.19883768 0 1.328 0 
-0.18 - 0.0977 1.215 0-499 

-0.15 -0.1334 1.163 1.88 
- 0.1 - 0.1405 1.113 6-62 
- 0.05 - 0.1083 1-076 19.8 
- 0.01745 - 0.0600 1.048 60-2 
- 0.00326 - 0.0200 1.025 395 

- 0.00326 - 0*0200 - 2.235 - 
-0.01745 - 0.0600 - 5.678 - 
- 0.05 - 0.1083 - 13.928 - 
- 0.1 - 0.1405 -41.118 
- 0.15 -0.1334 - 174.76 - 

TABLE 1. The lowest eigenvalues and squares of the norms 
for various values of p .  

__ 

8 

, p= - 0 1  

\ Lower branch, I1 = 1.113 

/ Upper branch, I ,  = 1.745 \ 

/ Lower branch,AL = -41.118 

FIGURE 2. The eigenfunctions corresponding to the lowest eigenvalues for 
p =  -0.1. 
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We also show in figure 1 and list in table 1 the lowest positive and highest 
negative eigenvalues, i.e. A,, for the lower branch solutions. The eigenfunctions 
associated with the positive eigenvalues have no zero for N;, 7 > 0, but we find 
numerically that the first negative eigenvalue corresponds to one root for Ni(7). 
The existence of other positive and negative values for these solutions is certain; 
we thus conclude that the lower branch solutions are unstable in the sense that 
any deviation from strict similarity at  an initial station will grow indefinitely 
with increasing downstream distance.? 

n 

1 
2 
3 
4 
5 

6 
7 
8 
9 

10 

An 

3.092 
4.959 
6-863 
8.784 

10.715 

12.653 
14-597 
16,544 
18.496 
20.450 

Qn 

2.066 
1.011 
0.691 
0.534 
0.440 

0-370 
0.331 
0.297 
0.270 
0.248 

n 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

An 
22.406 
24.365 
26.326 
28-288 
30.251 

32.216 
34-183 
36-150 
38.118 
40-088 

cn 
0.230 
0-215 
0.203 
0.192 
0.182 

0-174 
0.167 
0.160 
0.154 
0- 149 

TABLE 2. The eigenvalues and squares of the norms for p, = +. 

We show in figure 2 the eigenfunctions represented by N ; ( T )  for /3, = - 0.1, 
a typical negative value, corresponding to the eigenvalues shown in figure 1. 

For many applications of these eigensolutions it is necessary to have a signifi- 
cant number of eigenvalues, e.g. to represent with reasonable care an arbitrary 
initial profile. To illustrate the results which might be expected we give in table 2 
the first 20 eigenvalues and the square of the norms C, for Prn = +.I 

The solution for Pm > Po 
The first negative eigenvalue appears to grow indefinitely as Pm .+ PO+. Thus we 
conclude that the initial value problem posed above and leading in a first approxi- 
mation to (2.5) is physically meaningful only for the upper branch solutions for 
Pm > Po. For these cases the solution forf,(s, 7) may be written as 

03 

fi(% T )  = x 4 ( s / s i ) - ~ h ~ N n ( 7 ) ,  (2.13) 

where the A, are arbitrary constants which may be selected from the initial 
profile by application of (2.9). There results 

n = l  

(2.14) 

t Professor K. Stewartson has informed the second author that there is a numeri- 
cal study of the reversed flow, lower branch solutions that indicates that they ' flip over 
almost instantaneously to the normal (upper branch) form'. This would be in accord with 
the present findings. 

$ Tables of certain eigenfunctions and related functions of interest in applications are 
available from the authors upon request. 
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Subsequent solutions in the sequence given by (2.3) and defined by (2.6) may 
be found by constructing a Green’s function in a manner completely analogous 
to that followed by Libby & Fox (1963). We have 

(2.15) 

co 

where G(s, 7; 80, ~ 0 )  = C Dn(T0) N,(v) (so/s)’A8(2s,)-1, 

Dn(70 )  = C,lb(7)/fObI (Nn/fA)’I,=,,- 

n=l 

Note that there is no arbitrariness in these higher-order solutions. In  general 
the evaluation of thefn(s, 7) functions requires numerical evaluation of the double 
integrals. 

The eigenfunctions in the neighbourhood of PW = Po 
We have indicated above that the case of PW = Po is special in that fob is an eigen- 
function for any eigenvalue. The existence of negative eigenvalues precludes 
our interest in this case; however, we wish to note here that the determination 
of the points of tangency of the curves of A, versus PW as PW + POf with this line 
of continuous A, requires a modification of the general eigenvalue problem. As 
suggested by the observation that for Pm + Po’, N, --f fA/( -Pa )  we let 

(2.16) 

Then substitution into (2.7) yields for fl,(q) an equation identical with (2.7) but 
with revised homogeneous boundary conditions; namely, with 

AQO) = rnL(0) = B&) = 0 

and with the normalizing condition flk(0) = 1. 
This revised problem may be dealt with by the same numerical analysis as that 

described above provided the new boundary conditions are taken into account. 
For arbitrary PW, results identical with those for the original eigenvalue problem 
are obtained as must be the case. However, for Pco = Po the points of tangency 
such as A, in figure 1 are obtained without difficulty. 

We note here that (2.14) provides a further indication of the pathology of the 
casep, = Po; consider the behaviour ofAnas Pco +Po’. If (2.16) is substituted into 
(2.14), we find that A, is proportional to (f&,)-l times an integral whose integrand 
depends on [(F -fm)/fk]’ and other well-behaved functions. Thus as Pco -+ POf 
and f:,w -+ 0, the A ,  coefficients will become infinite unless F =too, i.e. unless 
the deviation of the initial profile from the Falkner-Skan solution for separated 
flow approaches zero. This behaviour implies that the downstream length re- 
quired for a deviation of the initial profile from that corresponding to similarity 
to decay increases as Pco + Po’. 

3. Concluding remarks 
The initial value problem associated with flows close to those described by the 

Falkner-Skan is considered. It is shown that only for the pressure gradient para- 
meter PW > 0 and for the upper branch solutions for Po < Pa, < 0 are the eigen- 
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values which arise in the analysis positive and thus that only for these cases is the 
flow spatially stable according to the linear theory on which the analysis is based. 
The lower branch solutions are shown to have at  least one negative eigenvalue; 
the indication is that there are an infinite number of negative values. Thus the 
lower branch solutions are spatially unstable. 

The eigenfunctions for the cases of applied interest may be readily computed 
for particular values of Boo and by analogy with previous experience with flows 
close to those described by the Blasius solution may be expected to be applicable 
to a variety of non-similar boundary layer problems involving arbitrary free 
stream pressure gradients and mass transfer. 

The authors are indebted to Professors Jacob Korevaar and John W. Miles for 
crucial suggestions concerning the Sturm-Liouville problem applicable to the 
lower branch solutions. 

This research was supported through the Institute for Radiation Physics and 
Aerodynamics by the Advanced Research Projects Agency (Project DEFEN- 
DER) under Contract no. DA-31-124-ARO-D-257, monitored by the U.S. Army 
Research Office, Durham, North Carolina. 

Note added in proof. After acceptance of this paper, the authors learned of 
the reference, Schonauer, W. 1965 Z.A .M.M.  45, T175, in which negative 
eigenvalues and thus instability of the lower branch solutions are indicated. 
Our treatment is more complete in all respects. 
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